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The Computational Efficiency Gap 

20 W 20 W 

~200000 W 

IBM Watson playing Jeopardy, 2011 

IBM Blue Gene supercomputer, equipped with 147456 CPUs and 144TB of memory, 

consumed 1.4MW of power to simulate 5 secs of brain activity of a cat at 83 times 

slower firing rates 



Neuromorphic Computing Technologies 
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Hardware Accelerators 

Approximate 
Computing,  Semantic 
Decomposition, 
Conditional DLN 

Spintronics-Enabled 

• Spin neuron, IJCNN ’12, 

APL’15,  TNANO, DAC, 

DRC, IEDM 

• Spintronic Deep Learning 

Engine, ISLPED ’14 

• Spin synapse,  APL ’15 

• …. 

• Approximate Neural Nets, 

ISLPED ’14 

• Conditional Deep 

Learning,  DATE 2016 

• …. 

SW (Multicores/GPUs) 

1 uJ/neuron 



Device/Circuit/Algorithm Co-Design: 
Spin/ANN/SNN 



BUILDING PRIMITIVES: MEMORY, NEURONS, SYNAPSES 
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DW-MTJ: Domain Wall Motion/MTJ 

 Three terminal device structure provides decoupled “write” and “read” current paths 

 Write current flowing through heavy metal programs domain wall position 

 Read current is modulated by device conductance which varies linearly with domain wall 

position 

 

Universal device: Suitable for memory, neuron, synapse, interconnects 

 



Simple ANN: Activation 
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Spin Hall based Switching DW-MTJ 

Switch a magnet using spin current, read using TMR effect 
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Step and Analog ANN Neurons 

9 

 Neuron, acting as the computing element, provides an output current (IOUT) 

which is a function of the input current (IIN) 

 Axon functionality is implemented by the CMOS transistor 

 Note: Stochastic nature of switching of MTJ can be used in Stochastic 

Neural nets 

 

IN 

OUT 

IN 

OUT 

Step Neuron Analog Neuron 



Benchmarking with CMOS Implementation 

Neurons Power Speed Energy Function technology 

CMOS Analog 

neuron 1 [1] 

~12µW 

(assume 1V 

supply) 

65ns 780fJ Sigmoid / 

CMOS Analog 

neuron 2 [2] 
15µW / / Sigmoid 180nm 

CMOS Analog 

neuron 3 [5] 
70µW 10ns 700fJ Step 45nm 

Digital Neuron [3] 83.62µW 10ns 832.6fJ 5-bit tanh 45nm 

Hard-Limiting 

Spin-Neuron 
0.81µW 1ns 0.81fJ Step / 

Soft-Limiting 

Spin-Neuron 
1.25µW 3ns 3.75fJ 

Rational/ 

Hyperbolic 
/ 

[1]: A. J. Annema, “Hardware realisation of a neuron transfer function and its derivative”, Electronics Letters, 1994 

[2]: M. T. Abuelma’ati, etc, “A reconfigurable satlin/sigmoid/gaussian/triangular basis functions”, APCCAS, 2006 
[3]: S. Ramasubramanian, et al., "SPINDLE: SPINtronic Deep Learning Engine for large-scale neuromorphic computing", ISLPED, 2014 
[4]: D. Coue, etc “A four-quadrant subthreshold mode multiplier for analog neural network applications”, TNN, 1996 

[5]: M. Sharad, etc, “Spin-neurons: A possible path to energy-efficient neuromorphic computers”, JAP, 2013  

Compared with analog/ digital CMOS based neuron design, spin based neuron 

designs have the potential to achieve more than two orders lower energy 

consumption 



In-Memory Computing (Dot Product) 
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All-Spin Artificial Neural Network 

 All-spin ANN where spintronic devices directly 

mimic neuron and synapse functionalities and 

axon (CMOS transistor) transmits the neuron’s 

output to the next stage 

 Ultra-low voltage (~100mV) operation of spintronic 

synaptic crossbar array made possible by 

magneto-metallic spin-neurons 

 System level simulations for character 

recognition shows maximum energy 

consumption of 0.32fJ per neuron which is 

~100x lower in comparison to analog and 

digital CMOS neurons (45nm technology)  

 

Spin-synapse Spin-neuron 

Biological Neural Network 

Spintronic Neural Network 

All-spin Neuromorphic Architecture 



Spiking Neural Networks 
(Self-Learning) 



Spiking Neuron Membrane Potential 

The leaky fire and integrate can be approximated by an MTJ – the magnetization 

dynamics mimics the leaky fire and integrate operation 

Biological Spiking Neuron  MTJ Spiking Neuron  

LIF Equation: LLGS Equation: 



MTJ as a Spiking Neuron 
Spikes at 3ns interval Spikes at 6ns interval 

 MTJ magnetization leaks and integrates input spikes (LLG equation) in presence of thermal noise 

 Associated “write” and “read” energy consumption is ~ 1fJ and ~1.6fJ per time-step which is much lower 

than state-of-the-art CMOS spiking neuron designs (267pJ [1] and 41.3pJ [2] per spike) 



Spiking Neurons 
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LLGS Based Spiking Neuron  

LLG Equation Mimicking Spiking Neurons 

DW-MTJ base IF Neurons 

DW Integrating Property Mimicking IF Neuron 

Input Spikes 

Membrane 

 Potential 

Output Spikes 

Input Spikes MTJ conductance 



Arrangement of DW-MTJ Synapses in 
Array for STDP Learning 

• Spintronic synapse in spiking neural networks exhibits spike timing dependent 

plasticity observed in biological synapses 

• Programming current flowing through heavy metal varies in a similar nature as STDP 

curve 

• Decoupled spike transmission and programming current paths assist online learning 

• 48fJ energy consumption per synaptic event which is ~10-100x lower in 

comparison to SRAM based synapses /emerging devices like PCM 

 

Spike-Timing Dependent Plasticity 



Comparison with Other Synapses 

Device Reference Dimension Prog. Energy Prog. 

Time 

Terminals Prog. 

Mechanism 

GeSbTe 

memristor 

D. Modha 

ACM JETCAS, 2013 

(IBM ) 

40nm mushroom and 

10nm pore 

Average 2.74 pJ/ 

event 

~60ns 2 Programmed by 

Joule heating 

(Phase change) 

GeSbTe 

memristor 

H.-S. P. Wong Nano 

Letters, 2012 

(Stanford) 

75nm electrode 

diameter 

50pJ (reset) 

0.675pJ (set) 

10ns 2 Programmed by 

Joule heating 

(Phase change) 

 

Ag-Si 

memristor 

Wei Lu 

Nano Letters, 2010 

(U Michigan) 

100nmx100nm Threshold 

voltage~2.2V 

~300µs 2 Movement of Ag 

ions 

FeFET Y. Nishitani 

JJAP, 2013 

(Panasonic, Japan) 

Channel Length-3µm Maximum gate 

voltage – 4V 

10µs 3 Gate voltage 

modulation of 

ferroelectric 

polarization 

Floating gate 

transistor 

P. Hasler 

IEEE TBIOCAS, 2011 

(GaTech) 

1.8µm/0.6µm 

(0.35µm CMOS 

technology) 

Vdd - 4.2V 

Tunneling Voltage 

– 15V 

100µs 

(injection) 

2ms 

(tunneling) 

3 Injection and 

tunneling currents 

SRAM  

synapse 

B. Rajendran 

IEEE TED, 2013 

(IIT Bombay) 

0.3µm2 (10nm 

CMOS technology) 

 

Average 328fJ for 

4-bit synapse 

- - Digital counter 

based circuits 

Spintronic 

synapse 

NRL 

Purdue 

340nmx20nm Maximum 48fJ 

/event 

1ns 3 Spin-orbit torque 



MTJ Enabled All-Spin Spiking Neural Network 

Probabilistic Spiking Neuron 

• A pre-neuronal spike modulated by synapse to generate 

current that controls the post-neuronal spiking probability. 
 

• Exploit stochastic switching behavior of MTJ in presence of 

thermal noise. 
 

 



MTJ Enabled All-Spin Spiking Neural Network 

Stochastic Binary Synapse 

• Synaptic strength proportional to temporal correlation 

between pre- and post-spike trains. 
 

• Stochastic STDP – Synaptic learning embedded in the 

switching probability of binary synapses. 
 



MTJ Enabled All-Spin Spiking Neural Network 

Stochastic SNN Hardware Implementation 

• Crossbar arrangement of the spin neurons and synapses 

for energy efficiency. 
• Average neuronal energy of 1fJ and 1.6fJ per timestep for write and 

read operations, and 4.5fJ for reset. 

• Average synaptic programming energy of 70fJ per training epoch. 
 

 

Classification accuracy of 

73% for MNIST digit 

recognition. 



Summary 

• Spintronics do show promise for low-power non-
Boolean/brain-inspired computing 

• Need for new leaning techniques suitable for 
emerging devices 

• Materials research, new physics, new devices, 
simulation models 

• An exciting path ahead… 


